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What do we mean by ‘learning’?

General qualitative model of (exact) learning:

I on the basis of incoming data consistent with an underlying concept

I learner achieves a desired type of knowledge of the underlying concept.

This perspective in various ways generalises many popular learning topics:

I one step updates with an incoming piece of information:

Belief Revision Theory, Dynamic Epistemic Logic

I particular algorithmic probabilistic methods of automatic improvement:

Machine Learning, Bayesian Learning, Reinforcement Learning

Gierasimczuk, N., Learning by Erasing in Dynamic Epistemic Logic. LATA 2009.

Gierasimczuk, N., Bridging Learning Theory and Dynamic Epistemic Logic. Synthese 2009.

Gierasimczuk, N., Knowing One’s Limits. Logical Analysis of Inductive Inference. PhD thesis, Universiteit van Amsterdam 2010.
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Subset Space

Definition
A subset space is (X ,O), where O ⊆ P(X ), X and O (at most) countable.
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Example: Identifiability in the Limit
Resulting knowledge: undefeated belief
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Learning: Streams of Observations

Definition
Let (X ,O) be a subset space.

I A data stream is an infinite sequence ~O = (O0,O1, . . .) from O.

I A data sequence ~O[n] is a finite initial segment of ~O of length n + 1.

Definition
Take (X ,O) and s ∈ S . A data stream ~O is:

I sound with respect to s iff every element listed in ~O is true in s.

I complete with respect to s iff every observable true in s is listed in ~O.

We assume that data streams are sound and complete.



Learning: Learners and Conjectures

Definition
Let (X ,O) be a subset space and let σ be a data sequence.

A learner L is a function that on σ outputs a conjecture L(σ) ⊆ X .

Definition
(X ,O) is identified in the limit by L if for every x ∈ X and every data stream
~O for x , there is k ∈ N s.t.:

L( ~O[n]) = {x} for all n ≥ k.

(X ,O) is identifiable in the limit if it is identified in the limit by a learner L.



Questions, Answers, and Problems

Definition

I A question Q is a partition of X , whose cells Ai are called answers to Q.

I Given x ∈ A ⊆ X , A ∈ Q is called the answer to Q at x , denoted Ax .

I Q′ is a refinement of Q if answers of Q are disjoint unions of those of Q′.
I A problem is a pair ((X ,O),Q), where Q is a question over X .

I ((X ,O),Q′) is a refinement of ((X ,O),Q) if Q′ is a refinement of Q.
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Solving in the Limit

Definition
((X ,O),Q) is solved in the limit by L if for every x ∈ X and every data

stream ~O for x , there is k ∈ N s.t.:

L( ~O[n]) ⊆ Ax for all n ≥ k.

((X ,O),Q) is solvable in the limit if solved in the limit by a learner L.
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General Topology

Definition
A a subset space (X ,O) is topological if:

1. ∅ ∈ O,

2. X ∈ O,

3. for any Y ⊆ O,
⋃

Y ∈ O, and

4. for any finite Y ⊆ O, we have
⋂

Y ∈ O.
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Separability by observations: Illustration
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Locally Closed and Constructible Sets

Definition
A topological space (X ,O) is Td iff
for every x ∈ X there is a U ∈ O such that U \ {x} ∈ O.

Td is a separation property between T0 and T1.

Definition
A set A is locally closed if A = U ∩ C , where U is open and C is closed.



Characterization of Solvability in the Limit

Theorem
((X ,O),Q) is solvable in the limit iff Q has a locally closed refinement.

Corollary
(X ,O) is identifiable in the limit iff it is Td .

A. Baltag, N. Gierasimczuk, S. Smets, On the solvability of inductive problems: a study in epistemic topology, TARK 2015.
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Relational semantics for modal logic

Definition (Syntax)

Let P be a countable set of propositional symbols, p ∈ P.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ

Definition (Semantics)

Given a model M = (W ,R, v), where R ⊆W ×W , v : P → ℘(W ), x ∈W :

M, x |= p iff x ∈ v(p) for each p ∈ P
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= �ϕ iff for all y ∈W : if xRy then M, y |= ϕ



Some Axioms and Their Epistemic Interpretation

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ) (omniscience)

(T) �ϕ→ ϕ (truthfullness/reflexivity)

(D) �ϕ→ ¬�¬ϕ (consistency/seriality)

(4) �ϕ→ ��ϕ (positive introspection/transitivity)

(5) ¬�ϕ→ �¬�ϕ (negative introspection/Euclidean-ness)

Ax is a logic of a class of models M iff Ax is sound and complete wrt M.
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Topological Interpretations
Relational � vs Topological � := Int

�ϕ �ϕ



Topological Topo-semantics for Modal Logic

Definition (Syntax)

Let P be a countable set of propositional symbols, p ∈ P.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ

Definition
A topological model (or a topo-model) M = (X ,O, v) is a topological space
(X ,O) together with a valuation function v : P → P(X ).

Definition (Semantics)

Given a topological model M = (X ,O, v) and a state x ∈ X :

M, x |= p iff x ∈ v(p) for each p ∈ P
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= �ϕ iff there is U ∈ τ(x ∈ U and for all y ∈ U: M, y |= ϕ)



Sound and Complete Topo-Axiomatizations

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(T) �ϕ→ ϕ

(D) �ϕ→ ¬�¬ϕ
(4) �ϕ→ ��ϕ
(5) ¬�ϕ→ �¬�ϕ

S4=
To
po

S4 is the topo-logic of all topological spaces (McKinsey & Tarski 1944).
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What about Td -spaces (identifiable in the limit)?

Td is not topo-definable.

The identifiability-adequate notion of belief is not topo-definable.

But let us, on a whim, change the way we view �.
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Topological d-semantics

Definition (Semantics)

Given a topological model M = (X ,O, v) and a state x ∈ X :

M, x |=d p iff x ∈ v(p)
M, x |=d ¬ϕ iff not M, x |=d ϕ
M, x |=d ϕ ∧ ψ iff M, x |=d ϕ and M, x |=d ψ
M, x |=d �ϕ iff ∃U ∈ τ(x ∈ U & ∀y ∈ U − {x} M, y |=d ϕ)
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(5) ¬�ϕ→ �¬�ϕ
(w) (ϕ ∧�ϕ)→ ��ϕ

(GL) �(�ϕ→ ϕ)→ �ϕ
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wKD45 is the d-logic of dense spaces.
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Sound and Complete d-Axiomatizations

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(T) �ϕ→ ϕ

(D) �ϕ→ ¬�¬ϕ

(4) �ϕ→ ��ϕ

(5) ¬�ϕ→ �¬�ϕ
(w) (ϕ ∧�ϕ)→ ��ϕ

(GL) �(�ϕ→ ϕ)→ �ϕ

And so what...?

Finally, K4 is the d-logic of all Td -spaces!



Another way

Get dynamic!

Baltag, A., Gierasimczuk, N., Özgün, A., Vargas Sandoval, A.L., and Smets S., A dynamic

logic for learning theory. J. Log. Algebr. Meth. Program. 2019.



Starting point: Subset Space Logic

Definition (Syntax)

Let P be a countable set of propositional symbols and p ∈ P.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | �ϕ

Definition
An intersection model M = (X ,O, v) is an intersection space (X ,O) together
with a valuation function v : P → P(X ).

Definition (Semantics)

Given an intersection model M = (X ,O, v), U ∈ O, and x ∈ U:

M, x ,U |= p iff x ∈ v(p)
M, x ,U |= ¬ϕ iff M, x ,U 6|= ϕ
M, x ,U |= ϕ ∧ ψ iff M, x ,U |= ϕ and M, x ,U |= ψ
M, x ,U |= Kϕ iff ∀y ∈ U M, y ,U |= ϕ
M, x ,U |= �ϕ iff ∀O ∈ O if x ∈ O ⊆ U then M, x ,O |= ϕ

A. Dabrowski, L.S. Moss, R. Parikh, Topological reasoning and the logic of knowledge, Annals of Pure and Applied Logic 1996.



A Dynamic Logic for Learning Theory (DLLT)

Definition (Syntax)

Let p and o be drawn from countable sets of propositional and observational
symbols, P and O respectively.

ϕ := p | o | L(~o) | ¬ϕ | ϕ ∧ ϕ | Kϕ | �ϕ | [o]ϕ



(DLLT): Learning Models

Definition
A learning model M = (X ,O,L, v) consists of:

I an intersection space (X ,O), as before.
I a learner L : O → P(X ), s.t.:

1. L(O) ⊆ O, and
2. if O 6= ∅ then L(O) 6= ∅.

(Additionally: L( ~O) := L(
⋂ ~O), where

⋂ ~O := O1 ∩ . . . ∩ On).

I a valuation map v : P ∪ O → P(X )



(DLLT): Semantics

Definition (Semantics)

Given a learning model M = (X ,O,L, v), U ∈ O, and x ∈ U:

M, x ,U |= p iff x ∈ v(p)
M, x ,U |= o iff x ∈ v(o)
M, x ,U |= L(o1, . . . , on) iff x ∈ L(U, v(o1), . . . , v(on))
M, x ,U |= ¬ϕ iff M, x ,U 6|= ϕ
M, x ,U |= ϕ ∧ ψ iff M, x ,U |= ϕ and M, x ,U |= ψ
M, x ,U |= Kϕ iff ∀y ∈ U M, y ,U |= ϕ
M, x ,U |= �ϕ iff ∀O ∈ O if x ∈ O ⊆ U then M, x ,O |= ϕ
M, x ,U |= [o]ϕ iff x ∈ v(o) implies M, x ,U ∩ v(o) |= ϕ



Abbreviations

I
∧
~o := o1 ∧ . . . ∧ on (

∧
λ := >)

I ~o ⇔ ~u := K ((
∧
~o)↔ (

∧
~u))

I [~o]ϕ := [o1] . . . [on]ϕ ([λ]ϕ := ϕ); similarly for 〈~o〉)
I B~oϕ := K(L(~o)→ ϕ)

I Bϕ := Bλϕ



(DLLT): Axiomatization
Basic Axioms and Rules

Basic axioms:
(P) all instantiations of propositional tautologies
(KK ) K(ϕ→ ψ)→ (Kϕ→ Kψ)
(TK ) Kϕ→ ϕ
(4K ) Kϕ→ KKϕ
(5K ) ¬Kϕ→ K¬Kϕ
(K[o]) [o](ψ → χ)→ ([o]ψ → [o]χ)

Basic rules:
(MP) From ϕ and ϕ→ ψ, infer ψ
(NecK ) From ϕ, infer Kϕ
(Nec[o]) From ϕ, infer [o]ϕ



(DLLT): Axiomatization
Learning Axioms

Learning axioms:
(CC) (

∧
~o)→ 〈K〉L(~o) Consistency

(EC) (~o ⇔ ~u)→ (L(~o)↔ L(~u)) Extensionality
(SP) L(~o)→

∧
~o Success Postulate



(DLLT): Axiomatization
Reduction axioms

Reduction axioms:
(Rp) [o]p ↔ (o → p)
(Ru) [o]u ↔ (o → u)
(RL) [o]L(~u)↔ (o → L(o, ~u))
(R¬) [o]¬ψ ↔ (o → ¬[o]ψ)
(RK ) [o]Kψ ↔ (o → K [o]ψ)
(R�) [o]�ψ ↔ �[o]ψ

Effort axiom and rule:
(�-Ax) �ϕ→ [~o]ϕ, for ~o ∈ O∗

(�-Rule) From ψ → [o]ϕ, infer ψ → �ϕ, where o 6∈ Oψ ∪ Oϕ



Completeness

Theorem
DLLT is sound and complete with respect to the class of learning models.



Expressivity (of learning concepts)

Proposition

I M, x ,U |= ♦Kp iff p is learnable with certainty at x.

I M |= p → ♦Kp iff p is verifiable with certainty.

I M |= ¬p → ♦K¬p iff p is falsifiable with certainty.

I M, x ,U |= �Bp iff L has undefeated belief in p at x.

I M, x ,U |= p ∧�Bp iff L has inductive knowledge of p at x.

I M, x ,U |= p ∧ ♦�Bp iff p is inductively learnable by L at x.

I M |= p → ♦�Bp iff p is verifiable in the limit by L.

I M |= ¬p → ♦�B¬p iff p is falsifiable in the limit by L.
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K.T. Kelly, The Logic of Reliable Inquiry, Oxford University Press, 1996.



Descriptive Set Theory
DLLT-definability
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Effective Descriptive Set Theory
Kleene-Mostowski Hierarchy
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Indexed families of recursive sets

Definition
An indexed family of recursive sets is a class C = (Si )i∈N for which a
computable function f : N× N→ {0, 1} exists that uniformly decides C, i.e.,

f (i ,w) =

{
1 if w ∈ Si ,

0 if w /∈ Si .

.

Angluin, D., Inductive inference of formal languages from positive data. Information and Control 1980.
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Texts and Learners

Definition
A text τ for a set S is an infinite sequence of all and only the elements from S .
τn is the n-th element of τ and τ�n is the sequence (τ0, τ1, . . . , τn−1);

Definition
A learning function, L, is a recursive map from finite data sequences to indices
of languages, L : N∗ → N ∪ {↑}.

Intuitively: If L(τ�n) = i then L conjectures that the language is Si .
L can refuse to give a natural number answer, in that case the output is ↑;

Definition
A learning function L is (at most) once defined on C=(Si )i∈N iff for any text
τ for a language in C and n, k ∈ N such that n 6=k: L(τ�n)=↑ or L(τ�k)=↑.
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Finite identifiability

Definition
Let C = (Si )i∈N as before. A learning function L:

1. finitely identifies Si in C on τ iff

L is once defined on τ and the defined value is j , such that Si = Sj ;

2. finitely identifies Si in C iff it finitely identifies Si on every τ for Si ;

3. finitely identifies C iff it finitely identifies every Si in C.

C is finitely identifiable iff there is an L that finitely identifies C.



Learning powers

FAST ⊂

FIN ⊂ SMON ⊂ MON ⊂ WMON ⊂ LIM
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I Strong-monotonic learning (SMON):

SL(τ�n) ⊆ SL(τ�(n+k))

I Monotonic learning (MON):

SL(τ�n) ∩ Si ⊆ SL(τ�(n+k)) ∩ Si

I Weak-monotonic learning (WMON), i.e., conservative learning:

if set(τ�(n + k)) ⊆ SL(τ�n), then SL(τ�n) ⊆ SL(τ�(n+k))

Lange, S. and Zeugmann, T., Types of Monotonic Language Learning and their Characterization. COLT 1992.

Zeugmann, T., Lange, S. and Kapur, S., Characterizations of monotonic and dual monotonic language learning. Information and

Computation 1995.
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Characterization of finite identifiability

Definition
A set Di is a definite finite tell-tale set (DFTT) for Si ∈ C if

1. Di ⊆ Si ,

2. Di is finite, and

3. for any index j 6= i , if Di ⊆ Sj then Si = Sj .

Theorem
A family C=(Si )i∈N is finitely identifiable iff there is an effective procedure
D : N→ P<ω(N), given by n 7→ Dn, that on input i produces a definite finite
tell-tale of Si .

Mukouchi,Y., Characterization of Finite Identification. Analogical and Inductive Inference 1992.

Lange, S. and Zeugmann, T., Types of Monotonic Language Learning and their Characterization, COLT 1992.



Fastest Learning

The fastest learner finitely identifies a language Si as soon as any DFTT for it
has been enumerated.

Definition
Let Di be a set of all DFTTs of Si ∈ C.
Let C be an indexed family of recursive sets. C is finitely identifiable in the
fastest way if and only if there is a learning function L s.t.:

L(τ�n) = i iff ∃D j
i ∈ Di D

j
i ⊆ set(τ�n) &

¬∃Dk
i ∈ Di D

k
i ⊆ set(τ�n − 1).

We will call such L a fastest learning function.



Finite identifiability and fastest learning

Not every finitely identifiable class is identified by a fastest learner.

Theorem
C exists that is finitely identifiable, but not in the fastest way.

N. Gierasimczuk, D. de Jongh, On the complexity of conclusive update, The Computer Journal 2013.



Conclusions

I Dynamic Modal Logic treatment of learnability.

I Topological perspective on knowledge is a bridge between modal
logic, learning theory, and computability.

I A new, more restrictive kind of finite identification.

I Even if computable convergence to certainty is possible, it may not
be computably reached at the first instant in which objective
ambiguity disappears.



The End

Thank you!
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